
Theoretical Prediction of the Molecular Constants of CO 
 
Molecular properties calculated using high-level electronic structure methods are sufficiently 
accurate that they can rival the accuracy of properties obtained from experimental 
measurements.  High-level calculations are especially valuable for chemists who seek to identify 
unknown molecules that may exist in our atmosphere or in interstellar clouds.  For example, 
calculations can be used to predict spectra of small molecules.  Cases have been reported in 
which calculated spectra have facilitated identification of molecules, reducing the labor-
intensive analysis of the emission spectra from months to days.  In this exercise, we will use 
high-level calculations to determine the spectroscopic properties of a well-known molecule, 
carbon monoxide. 
 
Molecular Constants of CO 
 
Figure 1 shows the infrared (IR) absorption spectrum of 12C16O.  The lines in this spectrum result 
from transitions between the ground (v=0) and first excited (v=1) vibrational states.  The 
spectrum is centered at its band origin (ν0) near 2143 cm–1 and has R-branch transitions (∆J=+1) 
extending to the right and P-branch transitions (∆J=–1) to the left (J is the rotational quantum 
number).  The spectrum can be analyzed by assigning an index m to each line.  The R-branch 
transitions are numbered 1, 2, 3,… starting at the band origin and counting outward. The P-
branch transitions are assigned indices –1, –2, –3,…, again from the band origin outward.  The 
transitions ωm are then fit using a third-order polynomial of the form 
 

 
Figure 1.  The infrared spectrum of 12C16O. 
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ωm  =  ω0  +  2(Be – αe)m  –  αem2  –  4Dem3 (1) 
 
where 
 

ω0  =  ωe  –  2ωexe. (2) 
 
The parameters ωe, ωexe, Be, αe, and De are collectively referred to as molecular constants.  
Herzberg1 reports the following experimental values for 12C16O. 
 

Molecular Constant Expt (cm–1) 
ωe (fundamental frequency) 2170.21 

ωexe (anharmonicity correction) 13.461 
Be (rotational constant) 1.9313 

αe (vibration-rotation constant) 0.01748 

De (centrifugal distortion constant) 6.43×10–6 

 
The fundamental frequency is related to the harmonic force constant k and reduced mass µ = 
mCmO/(mC+mO) of the molecule 
 

ωe =  
1

2πc
� 

k
µ

 (3) 

 
where c is the speed of light.  The rotational constant depends on the reduced mass and 
equilibrium bond length, Re, 
 

Be  =   
h

8π2cµRe
2 (4) 

 
where h is Planck’s constant.  Herzberg reports an experimental bond length for CO of 1.1281 Å. 
 
It is the goal of this exercise to use electronic structure methods to calculate the molecular 
constants of CO and compare them to the experimental values listed above. 
 
Molecular constants depend on features of the potential energy surface (PES).2  Figure 2 shows 
the PES of CO calculated at nine points in the vicinity of the equilibrium bond length.  The 
smooth curve through these points is the result of a sixth-order polynomial fit 
 

U(R)  =  a0  +  a2(R – Re)2  +  a3(R – Re)3  +  a4(R – Re)4  +  a5(R – Re)5  +  a6(R – Re)6. (5) 
 

 
1 G. Herzberg, Spectra of Diatomic Molecules, 2nd ed., Van Nostrand, New York, 1950. 
2 For diatomic molecules, the PES is also referred to as the potential energy curve.  For diatomics, the geometry is 
described by a single coordinate, R, the bond length, and the “surface” is simply a one-dimensional curve. 



This fitting function corresponds to a Taylor series expansion, truncated at sixth-order, where 
the coefficients an are essentially derivatives of the energy surface 
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evaluated at the energy minimum. 
 
There are seven adjustable parameters in Eq. (1), including a0, a2, a3, a4, a5, a6, and Re.  The a0 
parameter represents the energy at the minimum of the PES.  The second-order term (with 
parameter a2) describes the harmonic nature of the PES at the minimum, and the higher-order 
terms (involving parameters a3-a6) describe the anharmonic character of the PES.  Re is 
approximately 1.13 Å for CO. 
 
Herzberg shows that the parameters of Eq. (5) can be related to the molecular constants.  Be is 
calculated from the optimal Re value using Eq. (4).  The other constants are calculated using the 
following expressions: 
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 De  =   
4Be3

ωe2  (8) 

 
Figure 2.  The potential energy surface of CO near Re. 
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Note that the parameters a0, a5, and a6 of Eq. (5) are not used here.  a0 is a somewhat arbitrary 
reference energy of the minimum of the PES.  a5 and a6 can be used to evaluate higher-order 
corrections to Eqs. (8)-(10), but these corrections are negligible for CO and are, therefore, 
neglected.3 
 
Computational Methods 
 
There are a variety of electronic structure methods that one might consider for this study.  At 
the lowest level is the restricted Hartree-Fock (RHF) method that neglects the correlated 
motions of electrons.  Higher-level correlated methods include density functional theory (such 
as B3LYP, PBE, and PBE0), the family of Møller-Plessett perturbation theory methods (MP2, 
MP3, MP4), and the coupled cluster methods (CCSD, CCSD(T)).  The CCSD(T) method (coupled 
cluster singles and doubles with perturbative triples) is generally judged to be the most reliable 
method available. 
 
Highly extended basis sets, having large numbers of basis functions, are used for quantitative 
treatments of molecules.  In principle, one would like to use basis sets consisting of an infinitely 
large number of basis functions.  However, this isn’t practical.  Instead, many practitioners use 
the correlation consistent basis sets.  This family of sets (including cc-pVDZ, cc-pVTZ, cc-pVQZ, 
and cc-pV5Z) is constructed so that the energy calculated with each successive set tends to 
converge toward the value corresponding to an infinitely large basis set, the complete basis set 
(CBS) limit. 
 
In this exercise, we will use various levels of theory and basis set extrapolation to calculate 
potential energy surfaces for CO.  Analysis of these surfaces using Eq. (5), together with Eqs. (4) 
and (7)-(10) yields theoretical predictions for the CO molecular constants and the equilibrium 
bond length.  The predicted values will be compared with experiment.  A central goal of this 
work is to determine the levels of theory required to reliably determine the spectroscopic 
properties of CO. 
 
Calculations 
 

 
3 Why do we perform a sixth-order polynomial fit when the fifth-order a5 and sixth-order a6 parameters are not 
used?  Why not save some effort and just use a fourth-order polynomial?  Neglecting the a5 and a6 parameters in 
the fit effectively means setting these parameters to zero.  The resulting fourth-order polynomial will not fit the 
calculated data points as well, thereby compromising the accuracy of the a3 and a4 parameters as these two 
parameters adjust for the missing a5 and a6 parameters.  The resulting molecular constants will not be as accurate. 



You will perform two analyzes of the molecular constants of CO using different methods for 
solving the electronic Schrödinger equation.  One of these methods will be CCSD(T).  Choose a 
second method from RHF, B3LYP, MP2, MP4, and CCSD.4  (Ensure that you choose a different 
“second method” than selected by your classmates.)  CBS extrapolation will be performed for 
both methods.  Thus, if you choose, say, MP2 as your second method, you will ultimately 
calculate molecular constants at the CCSD(T)/CBS and MP2/CBS levels. 
 
1. Calculate the PES for CO at the CCSD(T)/cc-pVDZ level. 
 
 Use WebMO/Gaussian-16 to calculate the CCSD(T)/cc-pVDZ energy of CO for nine bond 

lengths, from 0.98 Å to 1.38 Å in 0.05 Å increments.  Tabulate the energies as a function of 
bond length in an Excel spreadsheet. 

 
2. Repeat step 1 using the basis sets cc-pVTZ, cc-pVQZ, and cc-pV5Z. 
 
 After completing this step, you should have a total of 36 energies, that is, four energies 

for each of nine bond lengths. 
 
3. Extrapolate the four energies for the 0.98 Å bond length to the CBS limit. 
 
 Record the resulting CCSD(T)/CBS energy in your spreadsheet, reporting the value to at 

least eight digits after the decimal point. 
 
4. Repeat step 3 for the other eight bond lengths. 
 
 After completing this step, you should have a total of 45 energies in your spreadsheet. 
 
5. Fit the nine points of the CCSD(T)/CBS PES using Eq. (5). 
 
6. Evaluate the molecular constants (in cm–1) using Eqs. (4) and (7)-(10).  Also, evaluate the 

band origin (in cm–1) of Eq. (2) and the force constant (in N/m) of Eq. (3). 
 
 Great care should be taken here.  Pay particularly close attention to units.  It’s 

recommended that you use SI units throughout your evaluations, then convert the 
constants to cm–1 at the end of the calculation. 

 
 Use the atomic masses for the isotopes 12C and 16O from the NIST website.  Using average 

values from the periodic table is guaranteed to yield bogus molecular parameters! 
 

 
4 The effort required for Gaussian-16 to calculate a CCSD(T) energy is considerable.  Along the way Gaussian gets 
the RHF, MP2, and CCSD energies for essentially free.  Thus, if you choose your “second method” from the latter 
three you’ll get both its energy and the CCSD(T) energy from a single CCSD(T) calculation, reducing your effort 
somewhat. 
 



 Use physical constants (h, c) having at least six significant figures.  Since some of the 
properties that you are evaluating here are precise to four or five places, using physical 
constants with fewer significant figures can lead to considerable round-off errors. 

 
7. Repeat this procedure using your “second method”. 
 
Turn in a one-page description of your calculations including a table listing the molecular 
constants, band origin, and equilibrium bond length.  Compare your calculated values to 
experiment.  How do the calculated values for the two methods you used compare?  Is one 
method more accurate than the other? 
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