

SAGA 1.0

Program Manual

compiled and edited by

Eric D. Glendening

Department of Chemistry and Physics

Indiana State University, Terre Haute, Indiana 47809

e-mail: glendening@indstate.edu

phone: (812) 237-2235

© Copyright 2012 Indiana State University. All rights reserved.

SAGA Program Manual 2

Table of Contents

A. Introduction

A.1. What is SAGA? 3

A.2. Program Distribution, Installation, and Execution 3

A.3. Input and Output 4

A.4. A Tutorial Example 6

A.5. Simulated Annealing Implementation 11

A.6. Genetic Algorithm Implementation 13

B. User's Guide

B.1. Input Philosophy 15

B.2. $control Group Input 16

B.3. $potential Group Input 18

B.4. $opt Group Input 20

B.5. $anneal Group Input 21

B.6. $genetic Group Input 22

B.7. $xyz Group Input 23

B.8. Sample Input 24

B.9. Vertical Binding Energy Analysis 24

B.10. Benchmark Calculations 25

C. Programmer's Guide

C.1. Main Program and Core Task Routines 29

C.2. Input Parsing 30

C.3. Local Optimization 31

C.4. Global Optimization 32

C.5. Energies and Energy Derivatives 33

C.6. String Query and Manipulation 36

C.7. Memory Management 37

C.8. Matrix and Vector Operations 39

C.9. General Input 41

C.10. Utility Routines 42

SAGA Program Manual 3

A. Introduction

A.1. What is SAGA?

SAGA is a Fortran program that implements a simulated annealing (SA) method and a genetic

algorithm (GA) for the global minimization of Lennard-Jones (LJ) clusters. SAGA provides the

following functionality:

 calculation of idealized geometries using a variety of packing motifs

 energy evaluation using Lennard-Jones or extended Lennard-Jones potentials

 local minimization by numerical or analytic gradient-based methods

 global minimization by simulated annealing (SA) or a genetic algorithm (GA)

 evaluation of zero-point energies and vibrational frequencies

 analysis of vertical binding energies

SAGA is available, free of charge, as a Windows binary executable or as Fortran-compilable

source code for Unix/Linux platforms.

A.2. Program Distribution, Installation, and Execution

SAGA 1.0 can be obtained at no charge at the website http://carbon.indstate.edu/saga. A binary

distribution for Windows and a source-code distribution for Unix/Linux are available.

A.3.1. Windows

1. Download the compressed binary distribution from the SAGA website. The distribution

includes four files:

 saga.bat – a batch file to run SAGA calculations.

 saga-1.0.exe – the binary SAGA executable file.

 cygwin1.dll – the cygwin dynamic link library.

 tutorial.dat – a sample SAGA input file (see A.4).

2. Create a SAGA folder, double-click the binary distribution to open it, and copy the four files

of the distribution into the SAGA folder.

3. Edit the saga.bat batch file. (Right-click saga.bat, and select “Edit.”) Set the path to include

SAGA folder (e.g. set path=%path%;c:\SAGA). Exit and save saga.bat.

4. Select Run from the Start Menu. Type “command” in the Run window, and click OK. A

DOS command window will open. Change to the SAGA directory (e.g. “cd c:\SAGA”).

5. Run the sample SAGA calculation by typing “saga tutorial” at the command prompt. The

SAGA calculation will write output to the file tutorial.log. See Section A.5 for discussion of the

SAGA Program Manual 4

tutorial.log output.

A.3.2. Unix/Linux

Download the gzipped/tar distribution file from the SAGA website. The distribution includes the

full source code for SAGA 1.0. Installation requires a Fortran compiler and GNU make.

Copy the SAGA tar file (saga-1.0.tar.gz) to an installation directory. Untar the file

 tar -zxvf saga-1.0.tar.gz

This creates the saga directory with source (saga/src) and binary (saga/bin) subdirectories.

Modify the Makefile in saga/src. Set the compiler variable to gfortran, g77, or pgf77 depending

on the compiler that is available on your system. The SAGA source code is principally Fortran-

77 and is largely portable so other compilers may work as well.

Type “make” in the saga/src directory to build the saga-1.0 executable. The executable will be

installed in the saga/bin directory. Edit the saga script in the saga root directory as needed.

Ensure that you are in the saga root directory and execute the tutorial calculation:

 saga tutorial

Output from this calculation will be directed to the file tutorial.log in the same directory. See

Section A.4 for an overview of the tutorial output.

A.3. Input and Output

The user controls SAGA execution using a text-based data file, $job.dat, where $job is the

filename environment variable set by the user. Output is directed to standard output, and

geometry information (in XMol) format is written to the files $job.xyz and $job.vbe.

The SAGA distribution includes the following saga script for running SAGA calculations:

 #!/bin/tcsh

setenv job $1

if (-e $job.log) rm -i $job.log

if (-e $job.log) exit

./bin/saga-1.0.exe >& $job.log &

For example, typing “saga ar23” at the Unix command prompt in the saga directory starts the

SAGA calculation, directing the program to read input from ar23.dat and to write output to

ar23.log. Cluster geometries would be written to ar23.xyz, and geometries associated with the

vertical binding energy analysis, if requested, would be written to ar23.vbe.

SAGA Program Manual 5

The corresponding Windows batch file is:

@echo off

REM job name

set job=%1

REM set path to SAGA and cygwin dll:

set path=%path%;c:\saga

REM execute SAGA calculation:

if not exist %job%.dat echo Missing %job%.dat input file

if exist %job%.dat saga-1.0.exe > %job%.log 2>%1

SAGA Program Manual 6

A.4. A Tutorial Example

Consider a sample calculation of the Ar23 cluster using Lennard-Jones parameters (= 3.465 Å;

= 80.6 cm
-1

) from gas viscosity measurements. The input for this calculation is a text file

(tutorial.dat):

 $control natoms=23 runtyp=anneal zpe freq vbe $end

 $potential label=Ar type=lj param=3.465,80.6 $end

The first line of this file is the $control group that specifies details of the desired cluster (23

atoms) and calculation type. The calculation performed includes global energy minimization by

simulated annealing (runtyp=anneal) with zero-point energy (zpe) and vibrational frequencies

(freq) evaluation and vertical binding energy (vbe) analysis.

The second line is the $potential group that specifies the identity of the atoms in the cluster

(label=Ar), the type of potential to be employed (type=lj), and the parameters for that potential

(param=3.465,80.6).

The SAGA calculation is executed by typing the command “saga tutorial” at the Unix or DOS

command prompt, assuming that SAGA is installed as described Section A.3. The calculation

writes, to the same directory of the tutorial.dat file, three output files, tutorial.log, tutorial.xyz,

and tutorial.vbe. We consider each of these files in turn.

A.5.1. Output File (tutorial.log)

SAGA echoes program options selected in the input file. All options are reported, including

default values for options that were not specified by the user. Descriptions of the six input

groups ($control, $potential, $opt, $anneal, $genetic, and $xyz) are given in Section B.

 --

 SAGA 1.0 - Simulated Annealing/Genetic Algorithm

 --

 $control input

 natoms = 23 nshell = .false.

 runtyp = anneal method = bfgs geometry = xyz

 vbe = 0.01 cm-1 zpe = .true. freq = 2

 seed = -1325555771

 $potential input

 label = Ar type = lj mass = 39.948 amu

 param = 3.465,80.6

 $opt default parameters

 ethr = 0.0001 cm-1 sthr = 0.0001 A gthr = 0.003 cm-1/A

 maxit = 200

SAGA Program Manual 7

 $anneal default parameters

 macro = 1000 micro = 100 ethr = 0.0001 cm-1

 tinit = auto tscale = 0.75 cm-1

 No $xyz input; generating initial icosahedral geometry

Because no cluster geometry in specified in the input file, the program automatically generates

an idealized icosahedral geometry.

SAGA proceeds to optimize the cluster geometry, seeking the global energy minimum using a

simulated annealing algorithm (see Section A.5).

 Geometry optimization by simulated annealing:

 macro micro total

 iter iter acc iter Ecur Emax Emin temp

 (cm-1) (cm-1) (cm-1) (cm-1)

 --

 0 -7117.5087

 1 2300 2025 2300 -7081.5394 -6790.2095 -7483.2645 304.808

 2 2300 1957 4600 -7150.7784 -6722.6442 -7483.2645 228.606

 3 2300 1782 6900 -7175.2796 -6790.1911 -7483.2645 171.455

 4 2300 1677 9200 -7350.5924 -6832.2637 -7483.2645 128.591

 5 2300 1456 11500 -7182.2946 -6857.9036 -7483.2645 96.443

 6 2300 1267 13800 -7223.9116 -6913.3953 -7483.2645 72.332

 7 2300 1081 16100 -7361.0186 -7011.7007 -7483.2645 54.249

 8 2300 759 18400 -7302.0546 -7086.6524 -7483.2645 40.687

 9 2300 347 20700 -7483.2645 -7171.6738 -7483.2645 30.515

 10 2300 215 23000 -7483.2645 -7234.5063 -7483.2645 22.886

 11 2300 121 25300 -7483.2645 -7302.0546 -7483.2645 17.165

 12 2300 99 27600 -7483.2645 -7483.2645 -7483.2645 12.874

 --

 converged

 Energy = -7483.264 cm-1

The initial icosahedral geometry has an energy of -7117.5.8 cm
-1

 (relative to separated atoms).

The annealing algorithm reports the status of the search at the conclusion of each macro-

iteration. For example, the first macro-iteration performed 2300 (100×natoms) local geometry

optimizations (micro-iterations) of the cluster with an annealing temperature of 304.8 cm
-1

. Of

the 2300 configurations considered, 2025 were accepted by the Metropolis algorithm. The least

stable and most stable of these geometries had respective energies of -6790.2 cm
-1

 and -7483.3

cm
-1

.

Macro-iterations continue, with annealing temperature scaled by 0.75 after each iteration, until

the energies of the least stable and most stable geometries differ by less than less than 0.0001 cm
-

SAGA Program Manual 8

1
 (the default convergence threshold, ethr of the $anneal group).

The annealing algorithm performs a total of 27,600 local optimizations before identifying a

geometry of energy -7483.3 cm
-1

 as the global minimum.

[Note that the algorithm had already identified at least one geometry of this energy during the

first macro-iteration (and in each macro-iteration thereafter). The user can reduce the calculation

time by decreasing the number of micro-iterations (see $anneal in Section B.5), which is

probably reasonable for a small cluster like Ar23. However, decreasing the number of micro-

iterations is problematic as cluster size increases. The number of local minima on the potential

energy surface increases exponentially with cluster size, and it becomes increasingly challenging

to ensure that the algorithm adequately searches the surface for the global minimum.]

The program next reports the vibrational frequencies (3N – 6 = 63 values with degeneracies

given in parentheses), zero-point energy (895.4 cm
-1

), total energy (-6587.8 cm
-1

), and vertical

binding energy analysis for the cluster:

 Frequencies (cm-1): 10.04(2), 11.17(2), 11.90, 13.52, 14.11(2), 14.85,

 15.81(2), 16.47, 16.84, 17.97(2), 18.63, 18.69(2), 18.85(2), 19.05(2),

 19.32, 22.07(2), 22.64, 22.78, 23.11(2), 23.37, 26.40(2), 26.67(2), 28.00,

 28.51(2), 28.54, 28.84, 29.61, 29.72(2), 30.10(2), 31.56, 32.94, 33.04(3),

 33.95, 34.51(2), 36.79(2), 50.35, 52.96(2), 55.35(2), 57.85, 64.90(2),

 76.25

 E = -7483.264 cm-1

 ZPE = 895.447 cm-1

 E+ZPE = -6587.818 cm-1

 Vertical Binding Energies:

 Monomers Cnt N Rav VBE

 (A) (cm-1)

 1-3 3 12 3.736 476.64

 4-5 2 9 3.892 405.16

 6-11 6 8 3.939 351.42

 12-17 6 6 3.947 265.50

 18-23 6 6 3.973 256.92

 Total 7483.26

 53.41 of 1024 megabytes memory used

 Total run time = 322.9 sec

The vertical binding energy analysis sorts (and renumbers) the atom monomers according to the

extent to which each contributes to the total binding energy, the energy required to fully

dissociate the cluster. Vertical binding energy for an atom is defined as one-half of the energy

change that results when that atom is removed from the cluster without changing the relative

SAGA Program Manual 9

positions of the remaining atoms. The sum of vertical binding energies over all atoms yields the

total binding energy.

Three atoms in Ar23 (numbered 1-3) have the strongest binding energies (476.6 cm
-1

 each) that

principally results from strong interactions with 12 nearest neighbor atoms. These are the three

atoms at the center of the Ar23 cluster (see below), and the average distance between these atoms

and their nearest neighbors is 3.736 Å. The atoms contributing least to the binding energy are six

atoms (18-23) on the surface of the cluster, each having only six nearest neighbor atoms.

A.5.2. XMol File (tutorial.xyz)

SAGA writes an XMol-formatted text file of cluster geometries considered during geometry

optimization. The file consists of a series of concatenated geometries, each expressed in

Cartesian coordinates, from the initial geometry to the geometry identified by simulated

annealing as the global minimum. The initial (zeroth) geometry is:

 23

Geom = 0 Energy = -7117.50865

Ar -1.043564 -0.633974 0.771605

Ar 0.488073 -1.563224 4.049204

Ar 2.553409 -1.719658 0.735773

Ar -2.384783 0.462009 -2.530441

Ar -3.364728 -3.062098 -0.830749

Ar 1.340239 1.836014 2.178256

Ar 0.237877 -2.553353 -2.185816

Ar -4.620085 0.392265 0.659413

Ar -1.730157 3.066157 0.180880

Ar 1.212178 1.183912 -1.470195

Ar -0.322523 -4.273079 1.309966

Ar -2.127626 1.334626 3.765406

Ar -3.298892 -2.411270 3.121210

Ar 1.394190 1.712176 5.908534

Ar 4.124345 -0.230017 3.841653

Ar 4.614885 1.457909 0.202482

Ar 0.508427 -0.021374 -5.015618

Ar -2.675234 -2.603693 -4.675778

Ar 4.335329 3.575098 3.657027

Ar 3.790273 -1.104701 -2.897985

Ar -5.864262 -1.002759 -2.841922

Ar -0.519413 3.595806 -3.736857

Ar 3.352040 2.563230 -4.196048

SAGA writes a cluster configuration to the XMol file every micro-iteration that the annealing

algorithm identifies a configuration of lower energy (lower than any identified previously).

Thus, at the conclusion of the SAGA calculation, the XMol file lists a series of cluster

configurations, each of successively lower energy. The last configuration listed is that which

likely corresponds to the global minimum.

SAGA Program Manual 10

A number of vizualization packages (including Molden and PyMol) can process the XMol

formatted file to display images of the geometries. PyMol was used to prepare the following

images of the initial and final geometries of this tutorial calculation:

The image on the left is that of the icosahedral geometry for Ar23, and that on the right is the D3h

symmetric geometry of the global minimum.

SAGA writes a geometry to the XMol file each time the simulated annealing (or genetic)

algorithm identifies a geometry of lower energy than any previously considered.

A.5.3. VBE File (tutorial.vbe)

SAGA Program Manual 11

A.5. Simulated Annealing Implementation

Simulated annealing (SA) is a global minimization technique that allows a cluster to sample a

wide range of configurations at an adjustable simulation “temperature.” As this temperature is

decreased, the cluster becomes increasing constrained to explore low energy configurations, and,

in the limit of very low temperature, converges on a single low energy configuration. If system

cooling is performed at a sufficiently slow rate, the SA algorithm is guaranteed to converge on

the configuration of lowest energy, that is the configuration corresponding to the global

minimum on the potential energy surface.

The SA algorithm in SAGA is implemented as follows: At any particular time during the

minimization, the system has a current reference configuration with energy Eref and a simulation

temperature T. The system “moves” to a trial configuration of energy Etrial. If the energy of the

trial configuration is lower than that of the reference, then the trial replaces the reference and the

algorithm proceeds to explore other “moves”. If, instead, the energy of the trial configuration is

higher than that of the reference, then the algorithm evaluates the Boltzmann probability factor

T

EE
E

reftrial

trial

)(
exp)(Prob

for the trial and selects a random number between 0.0 and 1.0. If the random number is smaller

than the Boltzmann factor, the trial replaces the reference; otherwise, the trial is discarded.

SA tracks the reference configurations of highest and lowest energies for fixed T. If the energies

of these configurations differ by less than threshold (0.001 cm
-1

, by default), the algorithm

assumes that a configuration corresponding to the global minimum has been identified, and the

search terminates.

Two important elements of the SA algorithm that influence convergence behavior include (i) the

“move” that generates trial configurations and (ii) the temperature scheduling that controls the

rate at which the system undergoes annealing.

The “Move”: Trial configurations are generated by selecting one atom of the cluster, moving it

to a different location on the surface of the cluster, and performing a conjugate-gradient

optimization to the nearest local energy minimum. The algorithm used to select atoms counts the

number of nearest neighboring centers. Although it is possible for any atom to be selected, it is

most likely that one on the cluster surface (having fewer nearest neighboring centers) is chosen

for the move. The selected atom is then moved to one of two positions, either to a random

position on the cluster surface or onto one of the principal rotation axes (the axis of highest

moment of inertia). Moving the atom on the principal axis generally yields a trial configuration

that is more nearly spherical than the reference configuration and may, therefore, have lower

energy. The algorithm chooses the random position or position on the principal axis with equal

probability.

Temperature Scheduling: Annealing is controlled by partitioning the SA minimization into

SAGA Program Manual 12

macro and micro iterations. The simulation temperature is fixed for each macro iteration. The

macro iteration consists of a number of micro iterations (equal to 100×natoms, by default).

Energy convergence is tested at the completion of a macro iteration. If not converged, the

temperature is reduced (scaled by 0.75, by default), and SA proceeds to the next macro iteration.

The initial temperature, if not specified by the user, is determined by performing 10×natoms

moves and setting the initial temperature to the difference of the resulting configurations of

highest and lowest energies.

It is possible for SA macro iterations to converge to a configuration having an energy higher than

that of another configuration sampled during the course of the minimization. SA always tracks

the configuration of lowest absolute energy. If SA converges to a configuration of higher energy,

SA is restarted, beginning from the configuration of lowest energy. This ensures that SA will

only ever report, upon convergence, the lowest energy configuration found.

SAGA Program Manual 13

A.6. Genetic Algorithm Implementation

A genetic algorithm (GA) is a global optimization method that mimics the natural selection

processes of evolution. Members of a population mate to form offspring which, according to

their fitness, are either discarded or join the population. Mutations occasionally occur, and the

resulting mutant offspring can potentially join the population too, whether they are fit or not.

The GA implemented in SAGA is similar to that described by D. M. Deaven, N. Tit, J. R. Morris,

and K. M. Ho, Chem. Phys. Lett. 256, 195 (1996). See Section B.6 for a description of GA

program parameters. We briefly describe our algorithm here.

SAGA's GA maintains a population consisting of a small number (typically 20) of cluster

configurations. The fitness of each member of this population is determined by its energy, with

lower energy corresponding to higher fitness. When no diversity exists in the population (that is,

all members have identical fitness, or energy), we judge that the search algorithm has likely

converged on the globally optimal configuration and terminate the search.

GA begins by generating a diverse population of candidate configurations. One of these

candidates is the configuration supplied by the user via the $xyz group, if available. Other

candidates are taken from a selection of idealized icosahedral, cubic closed packed, hexagonal

closed packed, and body centered cubic configurations. Conjugate-gradient optimization to the

nearest local minimum is performed on each candidate configuration.

A mating procedure is then used to generate a child configuration that inherits traits of two parent

configurations. The procedure randomly selects two candidates of the population to serve as the

parents. The first parent undergoes a random rigid rotation about its center of mass, which is

coincident with the origin of the coordinate system. All atoms of the rotated configuration that

lie below the xy plane are discarded. The second parent is also randomly rotated, and the atoms

in it that lie above the xy plane are discarded. A child configuration is subsequently assembled

by combining the “upper half” of the first parent with the “lower half” of the second. Care is

taken to ensure that the total number of atoms is conserved during this procedure. Furthermore,

atoms at the interface of the two halves may be moved to the surface of the cluster if particularly

close contacts are revealed. The resulting child configuration is finally optimized to the nearest

local minimum using a conjugate-gradient method.

A child configuration has the potential to enter the population by replacing one of the candidates.

The algorithm targets the candidate of highest energy. If the child has lower energy than this

candidate, the candidate is eliminated and the child assumes its position in the population. A

child will also replace the candidate if the child is a mutant. A child configuration of energy

Echild is designated a mutant if a random real number selected in the range 0.0 to 1.0 is less than

the mutation rate (4%, by default). Mutations maintain diversity in the population, allowing the

GA to sample a wide range of configurations and facilitating the search for a global solution

(minimum). GA would have a tendency to converge on local solutions if mutants were

consistently discarded.

GA iteratively applies the mating procedure, using parents to generate new children that may

SAGA Program Manual 14

enter the population, until all members of the population have identical low energy.

The GA implemented in SAGA is principally controlled by two keywords, “pop” and “mutate”

of the $genetic group. Increasing either from its default value will force GA to explore more

fully the configuration space for a global minimum. Increasing these values will also increase,

potentially dramatically, the time required to complete the calculation. Decreasing either value

will, of course, have the opposite effect. The default values were selected because they are

perceived to offer a reasonable balance of configuration exploration and run time.

GA results are sensitive to the random number generator seed of the $control group. Random

number tests are used to select parent configurations, to rotate the parents in the mating

procedure, and to identify mutants. Thus, different seeds (which can result from starting SAGA

calculations at different times; see “seed” in Section B.2) have the potential to yield differing

globally optimized cluster configurations. The default values for the “pop” and “mutate”

parameters were selected, in part, because that the final GA-optimized cluster is usually

independent of the seed value.

SAGA Program Manual 15

B. User's Guide

B.1. Input Philosophy

The user controls SAGA via a text-based input file that consists of one more “groups,” each

group providing information to direct a portion of the calculation. A group has the following

form:

 $group keyword1 keyword2 . . . $end

A group begins with the $group identifier ($control, $potential, $opt, $anneal, $genetic, or $xyz)

and ends with a $end delimiter.

The group generally includes one or more keywords, as described in Sections B.2-B.7. Each

keyword controls some aspect of the SAGA calculation. Numerical values associated with these

keywords should immediately follow the keyword, usually separated from the keyword by an

optional “=” character. For example,

 $opt ethr=0.002 $end

sets the energy convergence threshold of the conjugate-gradient optimizer to 0.002 cm
-1

. Units,

and “%” signs (for percentage values), are understood and should not be explicitly expressed

with the keyword.

Only the $control group is required; all other groups are optional.

The user should adhere to the following guidelines for groups when preparing input files.

 Input is case-insensitive and free format.

 Groups may be specified in any order within the input file.

 The group identifier (such as $control) must be the first word on the line of the input file

on which it appears.

 Groups may extend across multiple lines of the input file.

 Groups cannot overlap or be nested. For example, the group $potential … $end cannot

appear within the group $control … $end.

 If multiple groups have the same identifier (such as a pair of $control groups), only the

first group encountered, reading from the beginning of the file, is parsed; any other group

is ignored.

 Any information in the input file that appears outside a group is ignored. The “!”

character can be used within a group to denote comments. Any text following a “!”

character is ignored.

Sample input files are given in Section B.8.

SAGA Program Manual 16

B.2. $control Group Input

The $control group determines the principal tasks to be performed during the SAGA calculation.

The user must specify either the number of atoms (natoms) or the number of shells (nshell) in

this group. All other keywords are optional. Default values given in brackets.

keyword description

natoms Number of atoms in cluster; must be specified if nshell is not.

A range of atoms (e.g. natoms=2-13) will direct SAGA to perform a series

of calculations, from natoms=2 to natoms=13 in single atom increments.

nshell Number of shells of atoms in cluster; must be specified if natoms is not.

natoms is automatically set to the number of atoms in the Mackay

icosahedral cluster consisting of nshell shells. The number of atoms, n, in

the cluster is given by

)3111510(
3

1 23 NNNn

where N is the number of shells.

runtyp Type of calculation to perform. Allowed types include:

energy – energy evaluation only

force – evaluate energy and forces only

[optimize] – local conjugate-gradient energy minimization

anneal – global minimization by simulated annealing

genetic – global minimization by genetic algorithm

method Conjugate-gradient optimizer.

[bfgs] – analytic gradient-based method (generally faster than Powell)

powell – numerical gradient-based method

geometry Origin of initial cluster configuration.

[xyz] – read $xyz group, if available; otherwise icos

icos – icosahedral configuration

SAGA Program Manual 17

ccp – cubic close packed configuration

fcc – face centered cubic configuration (=ccp)

hcp – hexagonal close packed configuration

bcc – body centered cubic configuration

vbe Perform vertical binding energy analysis (see Section B.9).

The default energy resolution is 0.01 cm
-1

. A alternate resolution (e.g. 0.05

cm
-1

) can be specified by vbe=0.05.

VBE analysis can alternatively be enabled or disabled by vbe=.true. (with

default resolution) or vbe=.false., respectively.

zpe Calculate zero-point energy, for optimized geometries only.

ZPE analysis can alternatively be enabled or disabled by zpe=.true. or

zpe=.false., respectively.

freq Print vibrational frequencies, for optimized geometries only.

By default, frequencies are printed to two digits after the decimal point

[freq=2]. Use freq=n to specify the desired precision (to n digits).

seed Set integer seed for random number generator.

If not specified, the seed is determined by a call to the system time

function time().

SAGA Program Manual 18

B.3. $potential Group Input

The $potential group specifies details of the Lennard-Jones (LJ) or extended Lennard-Jones

(ELJ) interaction potential used in the SAGA calculation. The $potential group is optional.

Default values are given in brackets.

keyword description

label Character label for atom monomers [Ar].

Any label, up to 16 characters, may be used, but an atomic symbol is

required if zero-point energies are calculated.

mass Atomic mass, in amu.

If label is an atomic symbol, mass is set by default to that of the most

abundant isotope.

SAGA only uses the atomic mass when zero-point energies are calculated.

type Type of interaction potential. Allowed types include:

[lj] – Lennard-Jones potential

elj – Extended Lennard-Jones potential

param Ordered LJ or ELJ potential parameters, with energies expressed in cm
-1

and distances in Å.

For type=lj, the and parameters are listed. For example, a Lennard-

Jones potential for Ar (=3.405 Å and =83.26 cm
-1

) is specified by

param=3.405,83.26.

For type=elj, the ordered parameters c6, c8, c10, c12, etc. are listed. The

number of terms in the ELJ potential is determined by the number of

parameters listed with this option. The ELJ potential with 4-term

parameter list param=-5.1904e5,0,0,8.0891e8 is identical to the LJ

potential specified above, where c6=-4
6
, c8=c10=0, and c12=4

12
.

Unless otherwise specified, SAGA uses LJ potential parameters from

Hirschfelder, Curtiss, and Bird (from second virial coefficient

determinations) for the rare gas atoms He, Ne, Ar, Kr, and Xe. For ELJ,

SAGA uses the 6-term parameters from Schwerdtfeger, et al., Phys. Ref. B,

SAGA Program Manual 19

73, 064112 (2006) for He, Ne, Ar, and Kr.

SAGA Program Manual 20

B.4. $opt Group Input

The $opt group allows the user to change the default convergence thresholds for the conjugate-

gradient (BFGS/Powell) optimizers. All keywords in this group are optional. Default values are

given in brackets.

The $opt group controls local optimization of cluster configurations. Global optimization is

controlled by the $anneal or $genetic groups.

keyword description

maxit Maximum number of iterations [200].

ethr Energy convergence threshold [0.0001 cm
-1

].

The energy is converged when two consecutive energy evaluations differ

by less than ethr.

sthr Step convergence threshold [0.0001 Å].

The geometry is converged when the root-mean-square displacement

(step) from one geometry to the next is less than sthr.

gthr Gradient convergence threshold [0.003 cm
-1

/Å].

The gradients are converged when the root-mean-square gradient is less

than gthr.

SAGA Program Manual 21

B.5. $anneal Group Input

The $anneal group controls SAGA's simulated annealing algorithm. All keywords in the $anneal

group are optional. Default values are given in brackets.

See Section A.6 for a brief description of the algorithm implemented in SAGA.

keyword description

macro Maximum number of macro iterations [1000].

micro Scale factor for micro iterations [100].

The total number of micro iterations per macro iteration is micro×natoms.

ethr Energy convergence threshold [0.001 cm
-1

].

Simulated annealing terminates when the configurations of highest and

lowest energy for a macro iteration have energies differing by less than

ethr.

tinit Initial annealing temperature.

By default, the annealing algorithm examines 10×natoms randomly

generated configurations, setting the initial temperature equal to the largest

energy difference.

If specified, give the annealing temperature in cm
-1

.

tscale Temperature scaling factor [0.75].

The annealing temperature is scaled by this factor after each macro

iteration.

SAGA Program Manual 22

B.6. $genetic Group Input

The $genetic group controls SAGA's genetic algorithm. All keywords in the $genetic group are

optional. Default values are given in brackets.

See Section A.7 for a brief description of the algorithm implemented in SAGA.

keyword description

pop Number of configurations in population [20].

mutate Mutation frequency [4%].

Mutants (high energy child configurations) are accepted into the

population at roughly this frequency.

maxit Maximum number of iterations [1000000].

print Print frequency [1000].

Intermediate results are reported every print iterations.

ethr Energy convergence threshold [0.001 cm
-1

].

The genetic algorithm terminates when all configurations of the population

have energies differing by less than ethr.

SAGA Program Manual 23

B.7. $xyz Group Input

The user can supply a cluster configuration to SAGA using the optional $xyz group. This group

lists the Cartesian coordinates of the atomic centers of the configuration.

 $xyz

 label1 x1 y1 z1

 label2 x2 y2 z2

 .

 .

 $end

“label” is usually the atomic symbol for the center; it is read but discarded. “x1, y1, z1” are the

Cartesian coordinates (in Angstroms) of the first center. The $xyz group is free format.

If the user has not specified a configuration (using the geometry keyword of the $control group),

SAGA searches the input file for the $xyz group. If $xyz is present, SAGA parses the group. If

not present, SAGA uses a default icosahedral configuration.

The coordinates for any number of centers can be specified in the $xyz group. If the number of

centers equals natoms of the $control group, the configuration is read and used as is.

If too many centers are specified in $xyz (>natoms), the “natoms” centers nearest the center-of-

mass are retained; all other centers are discarded from the configuration.

If too few centers are specified in $xyz (<natoms), the configuration is augmented with centers

positioned at random locations on the surface of the cluster. The algorithm employed in this case

uses conjugate-gradient optimizations as centers are successively added to the cluster. Thus, the

resulting cluster configuration, while having the requested number of centers, is unlikely to have

any centers positioned at precisely the Cartesian coordinates given by the user in the $xyz group.

SAGA Program Manual 24

B.8. Sample Input Files

SAGA Program Manual 25

B.10. Benchmark Calculations

We report benchmark results for SA and GA optimizations for clusters having two to 105 centers.

These calculations used the idealized Lennard-Jones potential

V = 4∑

i< j

(rij
− 12− rij

− 6)
 (= = 1.0)

with centers of unit mass. The input has the following form

 $control natoms=2-55 runtyp=anneal zpe seed=1234567 $end

 $potential type=lj param=1.0,1.0 mass=1 $end

where runtyp is either anneal or genetic. The random number seed is fixed for all calculations to

ensure reproducible results. All other program options use their default values. (The

calculations reported here used a SAGA executable compiled by Portland Group's pgf77

compiler.)

The following table lists the number of conjugate-gradient optimizations (N) required to

converge the SA and GA searches and the energy and zero-point energy (both in cm
-1

) of the

converged cluster configurations. Reference values are from D. J. Wales and J. P. K. Doye, J.

Phys. Chem. A, 101, 5111 (1997) and R. H. Leary and J. P. K. Doye, Phys. Rev. E 60, R6320

(1999).

 simulated annealing genetic algorithm

n N E ZPE N E ZPE ref

2 20 -1.0000 31.038 18 -1.0000 31.038 -1.0000

3 113 -3.0000 91.773 3 -3.0000 91.773 -3.0000

4 410 -6.0000 180.902 6 -6.0000 180.902 -6.0000

5 500 -9.1039 270.067 5 -9.1039 270.067 -9.1039

6 2,684 -12.7121 373.798 10 -12.7121 373.800 -12.7121

7 7,806 -16.5054 470.627 12 -16.5054 470.634 -16.5054

8 15,445 -19.8215 559.551 13 -19.8215 559.540 -19.8215

9 11,700 -24.1134 667.965 22 -24.1134 667.953 -24.1134

10 11,000 -28.4225 772.394 71 -28.4225 772.406 -28.4225

11 14,300 -32.7660 875.474 43 -32.7660 875.478 -32.7660

12 10,800 -37.9676 987.564 15 -37.9676 987.564 -37.9676

13 10,400 -44.3268 1125.336 63 -44.3268 1125.336 -44.3268

14 11,200 -47.8452 1215.214 24 -47.8452 1215.225 -47.8452

15 18,000 -52.3226 1324.447 67 -52.3226 1324.443 -52.3226

16 20,800 -56.8157 1430.674 59 -56.8157 1430.670 -56.8157

17 47,600 -61.3180 1537.495 256 -61.3180 1537.493 -61.3180

SAGA Program Manual 26

18 28,800 -66.5309 1639.037 806 -66.5309 1639.059 -66.5309

19 20,900 -72.6598 1764.022 914 -72.6598 1764.018 -72.6598

20 24,000 -77.1770 1867.799 207 -77.1770 1867.818 -77.1770

21 52,500 -81.6846 1966.994 368 -81.6846 1967.029 -81.6846

22 39,600 -86.8098 2070.673 609 -86.8098 2070.684 -86.8098

23 27,600 -92.8445 2184.346 1,549 -92.8445 2184.349 -92.8445

24 55,200 -97.3488 2285.448 355 -97.3488 2285.476 -97.3488

25 40,000 -102.3727 2382.419 390 -102.3727 2382.408 -102.3727

26 31,200 -108.3156 2486.206 1,604 -108.3156 2486.251 -108.3156

27 91,800 -112.8736 2601.497 463 -112.8255 2590.893 -112.8736

28 67,200 -117.8224 2696.257 2,237 -117.8224 2696.297 -117.8224

29 31,900 -123.5874 2786.588 2,690 -123.5874 2786.641 -123.5874

30 42,000 -128.2866 2905.035 13,035 -128.2866 2905.028 -128.2866

31 195,300 -133.5864 3183.123 12,701 -133.5864 3183.118 -133.5864

32 35,200 -139.6355 3313.923 8,562 -139.6355 3313.914 -139.6355

33 122,100 -144.8427 3432.647 6,107 -144.8427 3432.644 -144.8427

34 78,200 -150.0445 3551.231 17,059 -150.0445 3551.245 -150.0445

35 42,000 -155.7566 3674.148 22,833 -155.7566 3674.161 -155.7566

36 57,600 -161.8254 3804.606 20,850 -161.8254 3804.570 -161.8254

37 92,500 -167.0337 3923.156 7,822 -167.0337 3923.078 -167.0337

38 38,000 -173.9284 4122.638 18,706 -173.9284 4122.697 -173.9284

39 42,900 -180.0332 4194.595 12,026 -180.0332 4194.700 -180.0332

40 64,000 -185.2498 4313.406 14,895 -185.2498 4313.389 -185.2498

41 102,500 -190.5363 4432.495 26,084 -190.5363 4432.373 -190.5363

42 63,000 -196.2775 4554.548 82,679 -196.2775 4554.590 -196.2775

43 107,500 -202.3647 4684.114 35,733 -202.3647 4684.063 -202.3647

44 92,400 -207.6887 4803.263 64,701 -207.6887 4803.065 -207.6887

45 81,000 -213.7849 4930.366 47,496 -213.7849 4930.416 -213.7849

46 64,400 -220.6803 5071.920 54,564 -220.6803 5071.909 -220.6803

47 75,200 -226.0123 5191.074 17,943 -226.0123 5191.073 -226.0123

48 96,000 -232.1995 5317.091 29,752 -232.1995 5317.218 -232.1995

49 63,700 -239.0919 5457.723 24,797 -239.0919 5457.775 -239.0919

50 80,000 -244.5499 5577.785 54,687 -244.5499 5577.775 -244.5499

51 122,400 -251.2540 5711.317 12,148 -251.2179 5711.453 -251.2540

52 135,200 -258.2300 5851.700 10,046 -258.2300 5851.608 -258.2300

53 132,500 -265.2030 5991.759 6,229 -265.2030 5991.708 -265.2030

54 59,400 -272.2086 6131.446 6,221 -272.2086 6131.361 -272.2086

SAGA Program Manual 27

55 71,500 -279.2485 6270.606 10,470 -279.2485 6270.606 -279.2485

56 173,600 -283.6431 6367.806 6,522 -283.6431 6367.759 -283.6431

57 96,900 -288.3426 6478.024 9,178 -288.1401 6465.544 -288.3426

58 191,400 -294.3781 6612.767 53,596 -293.5232 6588.821 -294.3781

59 118,000 -299.7381 6724.895 71,384 -299.6161 6722.723 -299.7381

60 84,000 -305.8755 6858.700 107,497 -305.8755 6858.646 -305.8755

61 79,300 -312.0089 6991.722 159,104 -311.0455 6966.305 -312.0089

62 198,400 -317.3539 7099.495 240,183 -317.3539 7099.552 -317.3539

63 296,100 -323.4897 7232.289 250,970 -323.4897 7232.344 -323.4897

64 153,600 -326.9407 7370.541 478,736 -328.6562 7339.869 -329.6201

65 663,000 -334.9715 7473.232 418,793 -334.9147 7470.979 -334.9715

66 105,600 -341.1106 7602.680 459,352 -341.1106 7602.757 -341.1106

67 120,600 -347.2520 7735.177 625,403 -347.2520 7735.072 -347.2520

68 149,600 -353.3945 7828.871 no conv -353.3945

69 124,200 -359.8826 7981.459 -359.8826

70 98,000 -366.8922 8119.835 -366.8923

71 92,300 -373.3497 8232.831 410,367 -372.0996 8227.458 -373.3497

72 165,600 -378.6373 8352.727 675,590 -378.6373 8352.797 -378.6373

73 109,500 -384.7894 8470.055 620,331 -384.7894 8469.996 -384.7894

74 125,800 -390.9085 8602.374 420,957 -390.1573 8591.446 -390.9085

75 330,000 -396.2822 8723.741 no conv -397.4923

76 539,600 -402.3846 8840.879 no conv -402.8949

77 146,300 -408.5183 8973.360 581,581 -406.2577 9144.669 -409.0835

78 171,600 -414.7944 9113.937 62,745 -412.7818 9279.530 -414.7944

79 126,400 -421.8109 9252.316 97,615 -420.2081 9434.627 -421.8109

80 128,000 -428.0836 9355.751 15,028 -424.6806 9529.573 -428.0836

81 121,500 -434.3436 9459.383 no conv -434.3436

82 131,200 -440.0414 9585.849 no conv -440.5504

83 157,700 -445.8006 9695.817 -446.9241

84 655,200 -452.0248 9869.847 -452.6572

85 161,500 -459.0558 10008.208 -459.0558

86 137,600 -465.2379 10109.999 no conv -465.3845

87 1,148,400 -472.0982 10377.668 -472.0982

88 149,600 -477.4990 10305.951 -479.0326

89 391,600 -483.1937 10431.854 -486.0539

90 540,000 -492.4339 10795.432 -492.4339

91 309,400 -498.8111 10927.070 no conv -498.8111

SAGA Program Manual 28

92 147,200 -505.1853 11058.703 -505.1853

93 269,700 -510.8777 11185.455 -510.8777

94 206,800 -514.5697 11061.667 -517.2641

95 199,500 -523.6402 11448.829 -523.6402

96 355,200 -529.8791 11582.651 no conv -529.8791

97 194,000 -536.6814 11721.193 -536.6814

98 245,000 -543.6430 11868.226 -543.6654

99 158,400 -550.6665 12005.412 -550.6665

100 460,000 -557.0398 12136.608 -557.0398

101 181,800 -563.4113 12267.907 702,101 -560.6457 12308.666 -563.4113

102 183,600 -568.3888 12440.567 -569.3637

103 298,700 -575.6589 12527.885 -575.7661

104 457,600 -582.0384 12659.319 -582.0866

105 273,000 -588.2665 12792.905 -588.2665

SAGA Program Manual 29

C. Programmer's Guide

C.1. Main Program and Core Task Routines

The following routines implement the principal tasks of the SAGA program:

program saga

Main SAGA program.

subroutine defalt(natoms)

Set program defaults.

subroutine init(c,ct,rt,idx,list,natoms,maxatm,igeom)

Generate an initial icosahedral, ccp, hcp, or bcc configuration.

subroutine force(c,d,natoms)

Evaluate and print forces.

function opt(c,natoms)

Perform local optimization of configuration c(3,natoms), and return the resulting energy.

function anneal(c,ct,cg,natoms)

Perform global, simulated annealing optimization of configuration c(3,natoms), and return

the resulting energy.

function genetic(c,cg,ch,t1,t2,ep,p,ct,scr,idx,list,natoms,

maxatm)

Perform global optimization of configuration c(3,natoms) using the genetic algorithm.

Return the resulting energy.

function zpe(c,h,u,v,x,l,natoms)

Evaluate vibrational frequencies and report the zero-point energy of configuration

c(3,natoms).

subroutine vbeanl(c,ct,e,rav,list,nb,natoms)

Perform vertical binding energy analysis of configuration c(3,natoms).

SAGA Program Manual 30

C.2. Input Parsing

The following routines parse the groups of the input file.

subroutine coninp(natoms)

Parse the $control group.

subroutine vinp()

Parse the $potential group.

subroutine optinp()

Parse the $opt group.

subroutine anninp()

Parse the $anneal group.

subroutine geninp()

Parse the $genetic group.

subroutine xyzinp(c,ct,rsq,list,natoms,maxatm)

Parse the $xyzinp group.

If the number of atoms listed in the $xyz group exceeds natoms, the atoms closest to the center-

of-mass are retained; all others are discarded.

If the number of atoms listed in the $xyz group is less than natoms, atoms are added to the

configuration using the move subroutine described elsewhere.

SAGA Program Manual 31

C.3. Local Optimization

SAGA implements two conjugate-gradient methods for local optimizations of cluster

configurations. These are the Powell method and the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) method. BFGS relies on the analytic evaluation of energy first-derivatives, whereas

Powell is entirely numerical.

The routines implemented here are based on those of Numerical Recipes.

function powell(c,ct,cit,ctt,tt,ci,natoms)

Implementation of the Powell conjugate-gradient method.

function bfgs(c,ct,d,dd,xi,hdd,scr,hess,natoms)

Implementation of the BFGS conjugate-gradient method.

subroutine mnbrak(ax,bx,cx,c,s,scr,n)

Bracket the energy minimum along the search vector s(n).

subroutine linmin(f,c,s,scr,n)

Locate the energy minimum along search vector s(n).

subroutine dlinmn(f,c,s,scr,n)

Locate the energy minimum along search vector s(n) using analytic derivatives.

function brent(xlam,ax,bx,cx,c,s,scr,n)

Use the Brent method to refine the energy minimum.

function brent(xlam,ax,bx,cx,c,s,scr,n)

Use the Brent method, with analytic derivatives, to refine the energy minimum.

function f1dim(x,c,s,ct,n)

Return the energy at point x along the search vector s(n).

function df1dim(x,c,s,ct,n)

Return the first derivative of the energy at point x along the search vector s(n).

SAGA Program Manual 32

C.4. Global Optimization

The following routines support SAGA's implementation of the simulated annealing (see anneal)

and genetic algorithm (see genetic) methods for global optimization.

subroutine adjust(c,ct,natoms)

Select a center at random from configuration c(3,natoms) and move it to a new position to

generate a new configuration. The original configuration is temporarily stored in ct(3,natoms).

subroutine select(ith,nb,natoms)

Select, at random, the ith center from a list of atoms. nb(natoms) is the number of neighboring

centers for each atom. The algorithm implemented is most likely to select a surface atom, that is

an atom with small nb value.

subroutine move(ith,c,natoms,r)

Move the ith atom to a new position on the surface of the configuration c(3,natoms). The

algorithm implemented either (i) moves the atom to an arbitrary position on the surface or (ii)

moves the atom onto the principal axis having the largest moment of inertia.

function metrop(etst,eref,temp)

Use the Metropolis algorithm to test etst. If etst is less than eref, set metrop>1. If etst is greater

than eref, select a random number between 0.0 and 1.0. If the random number is less than exp(-

(etst-eref)/temp), set metrop>1. Otherwise, set metrop=0.

subroutine restor(c,ct,natoms)

Restore configuration c(3,natoms) from ct(3,natoms).

subroutine mate(c,p1,p2,t1,t2,scr,list,natoms)

Construct a child configuration c(3,natoms) from parent configurations p1(3,natoms) and

p2(3,natoms). The parent configurations are randomly rotated in three dimensions. The child is

then constructed from the upper half of p1 and the lower half of p2. Atoms at the interface of

these halves are moved to the surface as needed (using move) to ensure that atoms are not

strongly overlapping.

SAGA Program Manual 33

C.5. Energies and Energy Derivatives

The following routines are used to evaluate the energies and energy derivatives of the Lennard-

Jones (LJ) and extended Lennard-Jones (ELJ) potentials:

function enrg(c,natoms)

Return the potential energy of the configuration c(3,natoms), where c lists the Cartesian

coordinates of the configuration in Angstrom units. The energy is

n

ji

ijij rVV)(where 2/1222)()()(jijijiij zzyyxxr

and the pairwise Vij contributions are those of the LJ or ELJ potentials as determined by the value

of itype in common/cints/.

real*8 function lj(eps,sigma,rsq)

Return the value of the Lennard-Jones potential evaluated at the square distance rsq. The LJ pair

potential is defined as:

612

4
ijij

ij
rr

V

where is the binding energy of pair and is associated with the equilibrium pair separation:

6 eqr

function elj(p,n,rsq)

Return the value of the extended Lennard-Jones potential evaluated at the square distance rsq.

p(n) lists the n parameters of this potential. The ELJ pair potential is defined as:

n

ij

ij
r

p
V

1
22)(

subroutine denrg(d,c,natoms)

Evaluate the energy first-derivatives d(3,natoms) of the configuration c(3,natoms). For the LJ

potential, these derivatives are:

126

2
224

ijijij ij

ji

i rrr

xx

dx

dV

For ELJ, the first derivatives are:

SAGA Program Manual 34

ij ijij

ji

i r

p

r

xx

dx

dV

2

subroutine hess(h,c,natoms)

Evaluate the energy second-derivatives h(3*natoms,3*natoms) of the configuration c(3,natoms).

For the LJ potential, these are:

off-diagonal blocks (for atoms i and j):

612

4

2
612

2

2

828
)(

2
1

24
ijijij

ji

ijijijji rrr

xx

rrrdxdx

Vd

612

4

2

27
))((

96
ijijij

jiji

ji rrr

yyxx

dydx

Vd

diagonal blocks (for atom i):

ij jii

dxdx

Vd

dx

Vd 2

2

2

ij jiji dydx

Vd

dydx

Vd 22

For the ELJ potential, the second derivatives are:

off-diagonal blocks (for atoms i and j):

ijij

ji

ijijji r

p

r

xx

r

p

rdxdx

Vd
)2(

)(1
4

2

2

2

ijij

jiji

ji r

p

r

yyxx

dydx

Vd
)2(

))((
4

2

diagonal blocks (for atom i):

ij jii

dxdx

Vd

dx

Vd 2

2

2

SAGA Program Manual 35

ij jiji dydx

Vd

dydx

Vd 22

SAGA Program Manual 36

C.6. String Query and Manipulation

String operations are performed by the following routines:

subroutine czero(a,n)

Fill string a with n blanks.

logical function equal(word1,len1,word2,len2,len,case)

Test the first len characters of word1(1:len1) and word2(1:len2) to determine whether these

strings are equivalent (equal=.true.) or not (equal=.false.). The test is case sensitive (case=.true.)

or not (case=.false.).

subroutine in2ch(in,ch,nc)

Construct string representation ch(1:nc) of integer in. On exit, nc is the number of characters

required to represent in.

function lentrm(string)

Return the position of the last non-blank character in string.

function lenwrd(string)

Return the number of characters in the first word of string.

subroutine re2ch(re,nd,ch,nc)

Construct string representation ch(1:nc) of real number re. nd is the number of decimal places to

include in ch. If nd<0, as many places as possible are included. On exit, nc is the number of

characters required to represent re.

function ucase(word,len)

Replace all lowercase characters in word(1:len) by uppercase characters.

SAGA Program Manual 37

C.7. Memory Management

SAGA is configured to use a large scratch array for most of its significant memory needs.

Portions of this array are dynamically allocated (and released and reallocated) during the course

of a calculation. The amount of scratch memory available is determined during program

installation by setting the mbytes parameter of the mbytes.fh include file:

 parameter(mbytes = 1024)

 parameter(mwords = 131072 * mbytes)

By default, SAGA is configured to use a 1GB (1024MB) scratch array. mbytes can be set to any

value desired, up to 2047MB. SAGA calculations will halt if insufficient scratch memory is

available.

The scratch array is defined in common/mem/ of the mem.fh include file (and in meminit.f).

 common/mem/a(mwords)

common/scr/ of the scr.fh include file is used to track the number of words (ipt) currently

allocated in the scratch array and the maximum number of words (imx) used during the

calculation (since meminit was last called).

 common/scr/ipt,imx

The following routines manage memory for SAGA:

subroutine meminit()

Initialize the scratch memory array.

function memalli(n)

Allocate n integer*4 elements. memalli returns an integer pointer identifying the first element of

the scratch array associated with these n elements. Calls memall.

function memallr(n)

Allocate n real*8 elements. memallr returns an integer pointer identifying the first element of

the scratch array associated with these n elements. Calls memall.

function memall(n,type)

Allocate n elements of type type, where type = 'c' (character*1), 'l' (logical*1), 'i' (integer*4), or

'r' (real*8). memall returns an integer pointer identifying the first element of the scratch array

associated with these n elements.

subroutine memrel(ip)

Release all memory in the scratch array including and after element (pointer) ip.

SAGA Program Manual 38

function memleft()

Returns the number of unused words remaining in the scratch array.

function memused()

Returns the maximum number of words used since the scratch array was last initialized by

meminit.

Using scratch memory in a program is generally implemented as follows:

 include 'mem.fh'

c Initialize memory:

 call meminit()

c Allocate two real*8 arrays and one integer array:

 i1 = memallr(3*natoms)

 i2 = memallr(natoms*natoms)

 j1 = memalli(natoms)

c Perform some task:

 call task1(a(i1),a(i2),a(j1))

c Release memory to pointer i2 (retaining i1):

 call memrel(i2)

c Reallocate memory:

 i2 = memallr(natoms)

 i3 = memallr(3*natoms)

 j1 = memalli(9*natoms)

c Another task:

 call task2(a(i1),a(i2),a(i3),a(j1))

c Release all memory (to i1) and print usage:

 call memrel(i1)

 write(6,*) 'Total memory used = ',memused()

SAGA Program Manual 39

C.8. Matrix and Vector Operations

The following are utility routines that perform a variety of matrix and vector functions:

subroutine icopy(ia,ib,n)

Copy integer vector ia(n) to ib(n).

subroutine izero(ia,n)

Form the null integer vector ia(n).

subroutine mcopy(a,b,m,nr,nc)

Copy matrix a(nr,nc) to b(nr,nc). m is the defined row dimension of a and b.

subroutine mdiag(a,b,m,n)

Copy the n diagonal elements of a(m,m) into b(n).

subroutine mmult(a,b,c,v,m,n)

Multiply matrices a(n,n) and b(n,n), storing result in c(n,n) and using v(n,n) as scratch storage.

m is the defined row dimension of each matrix.

subroutine mout(a,mr,nr,nc)

Print matrix a(nr,nc) to standard out. m is the defined row dimension of a.

subroutine mrot(a,natoms,r)

Rotate in three dimensions the Cartesian coordinates in a(3,natoms) by r(3,3).

subroutine msimtr(a,b,x,m,n)

Similarity transform matrix a(n,n) by b(n,n) using x(n,n) as scratch storage. m is the defined row

dimension of each matrix.

subroutine mtrnsp(a,m,n)

Transpose matrix a(n,n). m is the defined row dimension of a.

subroutine munit(a,m,n)

Form the unit matrix in a(n,n). m is the defined row dimension of a.

subroutine mzero(a,m,nr,nc)

Form the null matrix in a(nr,nc). m is the defined row dimension of a.

subroutine vcopy(a,b,n)

Copy vector a(n) to b(n).

subroutine vdiff(a,b,d,n)

Evaluate the vector difference d(n) = a(n) – b(n).

function vdot(a,b,n)

SAGA Program Manual 40

Return the dot product of vectors a(n) and b(n).

function vlen(a,n)

Return the length of vector a(n).

subroutine vnorm(a,n)

Normalize vector a(n) to unit length.

subroutine vscal(a,n,scale)

Scale vector a(n) by the factor scale.

subroutine vsum(a,b,s,n)

Evaluate the vector sum s(n) = a(n) + b(n).

subroutine vzero(a,n)

Form the null vector a(n).

SAGA Program Manual 41

C.9. General Input

SAGA includes a set of general, free-format input routines designed to conveniently parse the

input file. The following guidelines apply:

 An input line can consist of up to 256 characters. Any additional characters are ignored.

 Commas (,) and equal signs (=) are treated as blank characters.

 Exclamation pointx (!) delimit comments. The exclamation point and any characters that

follow it are ignored.

 The following are examples of fields that are recognized as real numbers. The first three

can also be read as integers.

204 -2.03d2 e6 2.345 5.5E-03

Input is generally handled by the following five routines, one to initiate input and force lines of

the input file to be read (deck), three routines to parse character, real, and integer fields (cfld,

rfld, ifld), and one to return a field if intending to re-read it (rtnfld). The logicals error and eof

respectively signal (when .true.) that an error has been encountered parsing input or that the end-

of-file has been reached.

subroutine deck(lfn,eof)

Initiate input from unit lfn and read the first line of input (or the next line of input if lfn is already

open).

subroutine cfld(string,nc,eof)

Read the next word in the input file. The result is returned in string(1:nc).

function rfld(error,eof)

Return the real*8 value of the next word in the input file. error is .true. when the next word

cannot be interpreted as a real number.

function ifld(error,eof)

Return the integer value of the next word in the input file. error is .true. when the next word

cannot be interpreted as an integer.

subroutine rtnfld()

Return (reuse) the last word for next call to cfld, rfld, or ifld.

The following are utility routines that support the five routines listed above.

subroutine card(eof)

Read the next input line.

subroutine word(len,eof)

Parse next word on input line.

SAGA Program Manual 42

C.10. Utility Routines

The following routines are of general utility:

function augmnt(c,natoms)

Augment the configuration by a single atom, placing the atom on the cluster surface near the

principal axis of highest moment of inertia. Perform conjugate-gradient optimization of the

resulting configuration, returning its energy and equilibrium coordinates, the latter in

c(3,natoms).

subroutine com(x,c,natoms)

Determine the center of mass, x(3), of the configuration c(3,natoms). All centers are assumed to

be of equal mass.

function dist(a,b)

Return the distance between points a(3) and b(3).

function distsq(a,b)

Return the square of the distance between points a(3) and b(3).

subroutine euler(rot,alpha,beta,gamma)

Construct the rotation matrix rot(3,3) based on the Euler angles alpha, beta, and gamma using the

x-y-z convention with right-handed positive rotation.

subroutine frqout(f,nf,ifrq)

Print the frequencies in f(nf), grouping frequencies that differ by less ±1 in the ifrqth decimal

place.

function getr()

Return the equilibrium pair separation of the defined LJ or ELJ potential. For LJ, this value is

determined analytically. For ELJ, the value is obtained through the conjugate-gradient

optimization of the dimer.

subroutine halt(message)

Halt program execution, writing message and reporting memory usage and timing information.

subroutine ihsops(sop)

Generate in sop(3,3,120) the 120 symmetry operators of the Ih group.

function intrn(ilo,ihi)

Return a random integer in the inclusive range ilo to ihi.

subroutine itensr(xi,c,natoms)

Return in xi(3,3) the moment of inertia tensor for configuration c(3,natoms).

subroutine jobtim(elap,tot)

SAGA Program Manual 43

Return the elapsed time elap (since last call) and total run time tot. Timing information is

acquired by calls to the Fortran 3F dtime function, which may not be portable.

subroutine mackay(n,c)

Generate in c(3,*) the coordinates for the idealized Mackay icosahedral configuration consisting

of n shells.

subroutine naybor(nb,rav,c,natoms,r)

Return in nb(natoms) and rav(natoms), respectively, the number of neighboring atoms and the

average distance to these neighbors for each of the atoms in configuration c(3,natoms). r is the

threshold distance used to determine whether a pair of atoms are neighbors or not.

function nctrs(nshell)

Return the number of centers in the Mackey icosahedral configuration that consists of nshell

complete shells.

function nshell(natoms)

Return the number of shells in the smallest Mackey icosahedral configuration that consists of at

least natoms atoms.

function pythag(a,b)

Return the length of the hypotenuse given the lengths a and b of the sides of a right triangle.

subroutine rank(a,n,l)

Rank (from lowest to highest, and to within ±10
-6

) the values in a(n). l(n) reports the original

location of each element of the sorted a values.

function ran3()

Return a uniform random deviate in the inclusive range 0 to 1.

subroutine ranrot(c,natoms)

Perform a random three-dimensional rotation of configuration c(3,natoms).

function realrn(xlo,xhi)

Return a random real value in the inclusive range xlo to xhi.

subroutine shell(n,c,natoms,sops)

Generate in c(3,natoms) the coordinates for all atoms residing in the nth shell of the Mackay

icosahedral configuration. Uses the Ih symmetry operators of sops(3,3,120).

subroutine svdcmp(a,m,n,mp,np,w,v,xs)

Use singular value decomposition to evaluate the eigenvalues w(n) and eigenvectors v(n,n) of

matrix a(m,n). Defined dimensions of the matrices and vectors are a(mp,np), w(np), v(np,np),

and xs(n).

subroutine trans(x,c,natoms)

SAGA Program Manual 44

Translate the configuration c(3,natoms) so that the center of mass coincides with x(3).

subroutine vdef()

Load default potential parameters into common/creals/.

function wrgeom(c,natoms,idx)

Shift the center of mass of configuration c(3,natoms) to the origin, write the configuration in

XMol format to unit 7, and return the energy to the calling program. The title line of the XMol

formatted file reports the energy and the arbitrary geometry index idx.

subroutine xshift(c,natoms)

Translate the configuration c(3,natoms) so that the center of mass coincides with the origin of the

coordinate system.

function xmass(atsym)

Return the atomic mass (in amu) of the most abundant isotope of atomic symbol atsym.

